Getting started with Simulink

Launch Simulink	
In the MATLAB command window, at the >> prompt, type simulink and press ← Enter	
MATLAB Command Window	_ 🗆 X
<u>File Edit View Window H</u> elp	
🗅 😅 👗 🛍 🛍 🗠 🛛 🎟 🚼 🛼 🥊	
To get started, type one of these: helpwin, helpdesk, or demo. For product information, type tour or visit www.mathworks.com.	<u>~</u>
» simulink	Ŧ
	E
	Contraction in the second statements of the second s

Create a new model

- Click the new-model icon in the upper left corner to start a new Simulink file
- Select the Simulink icon to obtain elements of the model

Your workspace

Library of elements

Model is created in this window

Save your model

You might create a new folder, like the one shown below, called *simulink_files*

Use the .mdl suffix when saving

Save As						? ×
Save jn: 룾	LAYTON on JU	PITERVADRA	STE - 🖻	1 🚮		
Config	1 500					
Windows	ues NT 4.0 Workstat	ion Profile				
🗋 public						
, File <u>n</u> ame:	simple_io.mdl				<u>S</u> a	ive
Save as <u>type</u> :	×.mdl			•	Car	ncel
						//.

Example 1: a simple model

 Build a Simulink model that solves the differential equation

 $\dot{x} = 3\sin(2t)$

- Initial condition x(0) = -1.
- First, sketch a simulation diagram of this mathematical model (equation) (3 min.)

Simulation diagram

- Input is the forcing function $3\sin(2t)$
- Output is the solution of the differential equation x(t) = -1

integrator

Now build this model in Simulink

Select an input block

Drag a *Sine Wave* block from the *Sources* library to the model window

Select an operator block

Drag an *Integrator* block from the *Continuous* library to the model window

<u>File Edit View Simulation Format</u> Tools \square \square \square \square \square \square	= 🛺
	= 🏹
	= 🛛 🛺
Sine Wave Integrator	

Select an output block

Drag a *Scope* block from the *Sinks* library to the model window

関 un	titlec	ж			- 🗆 ×
<u>F</u> ile	<u>E</u> dit	View	Simulation	Forma <u>t</u>	
T <u>o</u> ols	3				
	Ê 月	🖶 %	•	2 ≏ ▶	=
	Sine Wa	nve li	1 s ntegrator	Scope	
] 100%	6			ode45	

Connect blocks with signals

- Place your cursor on the output port (>) of the *Sine Wave* block
- Drag from the *Sine Wave* **output** to the
 Integrator **input**
- Drag from the Integrator output to the Scope input

📓 ur	ntitled	*			
<u>F</u> ile	<u>E</u> dit	View	Simulation	Forma <u>t</u>	
T <u>o</u> ol:	S				
	🖻 日	🚭 %	h R 2		=
	Sine Wa] Ive Ir	1 s htegrator	Scope	
] 100%	6			ode45	

Arrows indicate the direction of the signal flow.

Select simulation parameters

Double-click on the *Sine Wave* block to set amplitude = 3^{-----} and freq = 2. -----

This produces the desired input of $3\sin(2t)$

rput a sine wave.	
irameters	
Amplitude:	
Frequency (rad/sec):	
2	
Phase (rad):	
Sample time:	
0	
OK Cancel Help A	ylaa

Select simulation parameters

Double-click on the *Integrator* block to set initial condition —— = -1.

This sets our IC x(0) = -1.

Parameters			
External reset: Inone	:		
Initial condition source	: internal		-
Initial condition:			
- 1		 	
Limit output			
Upper saturation limit:			
inf			
Lower saturation limit:			
-inf		 	
, Show saturation p	ort		
Show state port	U.N.		

13

Select simulation parameters

Double-click on the *Scope* to view the simulation results

Run the simulation

In the model window, from the *Simulation* pulldown menu, select *Start*

View the output x(t) in the *Scope* window.

🗟 untitled *			_ 🗆 🗙
<u>F</u> ile <u>E</u> dit <u>V</u> iew	<u>S</u> imulation	Forma <u>t</u>	T <u>o</u> ols
▋□	<u>S</u> tart	Ctrl-	+T ,
	Stop		
\square	Para <u>m</u> ete	rs Ctrl-	+E
Sine Wave	✓ <u>N</u> ormal		
	<u>E</u> xternal		
100%		ode45	

Simulation results

To verify that this plot represents the solution to the problem, solve the equation analytically.

The analytical result, $x(t) = \frac{1}{2} - \frac{3}{2}\cos(2t)$

matches the plot (the simulation result) exactly.

Example 2

- Build a Simulink model that solves the following differential equation
 - 2nd-order mass-spring-damper system
 - zero ICs
 - input f(t) is a step with magnitude 3
 - parameters: m = 0.25, c = 0.5, k = 1

$$m\ddot{x} + c\dot{x} + kx = f(t)$$

Create the simulation diagram

On the following slides:

- The simulation diagram for solving the ODE is created step by step.
- After each step, elements are added to the Simulink model.
- Optional exercise: first, sketch the complete diagram (5 min.)

$$m\ddot{x} + c\dot{x} + kx = f(t)$$

 First, solve for the term with highestorder derivative

$$m\ddot{x} = f(t) - c\dot{x} - kx$$

 Make the left-hand side of this equation the output of a summing block

 Add a gain (multiplier) block to eliminate the coefficient and produce the highest-derivative alone

 Add integrators to obtain the desired output variable

Add a scope from the *Sinks* library.

Connect output ports to input ports.

Label the signals by double-clicking on the leader line.

 Connect to the integrated signals with gain blocks to create the terms on the right-hand side of the EOM

- Double-click on gain blocks to set parameters
- Connect from the gain block input backwards up to the branch point.
- □ Re-title the gain blocks.

Drag new *Gain* blocks from the *Math* library

To flip the gain block, select it and choose *Flip Block* in the *Format* pull-down menu.

Parameters						
Gain:					c = 0	
Saturate o	n integer overflo	DW			U-0	'•~
OK	Cancel		<u>H</u> elp	A	pply	
lock Daran	otors: Si	oring	const	ant	×	
Gain		Jring	CONSC			
	ain.y=k.×u					
Scalar or vector ga						- H
Scalar or vector ga Parameters						
Scalar or vector ga Parameters Gain:					- 1 ₄	1

Complete the model

- Bring all the signals and inputs to the summing block.
- Check signs on the summer.

Final Simulink model

Run the simulation

Results

